
Priority Queues and Binary
Heaps

See Chapter 21 of the text, pages 807-839.

Question 1: What would you do if you had a very
large unsorted collection of data values and you
wanted to find the smallest value in the collection?

Answer 1: You have to look at all of the values, so
there is really nothing you could do better that to
walk through the whole collection comparing each
value to the smallest value you have seen so far.

This just takes n comparisons.

Question 2: Now suppose that instead of the
smallest value you need the 10 smallest values.
What would you do?

Answer 2: You might keep an ArrayList of the 10
smallest values you have seen so far. Each time you
see a new datum you have to find where it goes in
this list.

This might tale 10*n comparisons.

Question 3: Now suppose that you need a bunch
of the smallest values, but you aren’t sure in
advance how many you will need. And you might
have to add in some new data after you have
removed some. What do you do?

We can do better than just using lists. In time O(n)
we can turn an ArrayList into a Heap. In time
O(log(n)) we can remove the smallest element
from the Heap (and restore it to being a heap. So
to find the k smallest values takes time O(n) at the
start and O(k*log(n)) to find the small values.
Inserts also take time O(log(n)).

A Heap is a particular instance of our next data
structure, the priority queue.

A priority queue is a queue-like data structure
that assumes data is comparable in some way (or
at least has some field on which you can base
comparisons). You can only see or remove the
smallest value in a priority queue.

We will assume the data has a Comparator: if the
data has type T, then there is a function

int compare(T x, T y)
that returns -1 if x is “smaller” than y, 1 if x is
“larger” than y, and 0 if they are “equal”

Question: What do I do if I want a priority queue
based on the largest rather than the smallest
value?

A. Use a comparator that flips its values: if x < y
have compare(x,y) return +1 rather than -1.

B. Multiply all of the values by -1.
C. Put the data in an array and sort it.
D. Put the data in an array and reverse-sort it.

Answer A: Flip the comparator.

There is varying terminology for priority
queues. Here are the Java names for the
standard operations. These differ from the
names our text uses; the text we used to use
for 151 had an even different set of names.
The following are what we will use in Lab 8. As
usual, this assumes that E is the base type of
the structure.

int size(): returns the number of items currently in the queue
boolean offer(E x) : inserts element x into the queue
E peek(): returns the smallest element in the queue without

changing the queue, or returns null if the queue is empty.
E poll(): removes from the queue the smallest element in it

and returns this element, or null if the queue is empty
void clear(): removes all of the elements from the queue
Iterator<E> iterator(): returns an iterator for the queue
Comparator<? super E> comparator(): returns the

comparator used for ordering the queue

We will add to these

void setComparator(Comparator<E> cmp): installs a new
comparator and reorders the queue.

It should not be surprising that priority queues
are important. In many situations we do not
need a complete ordering of our data; we just
need to know what comes next.

For example suppose you are making a to-do list
where some tasks are more important than others.
Put the tasks in a priority queue organized by
importance. The offer method adds a job to the
queue. The peek method lets you see whatever is
currently the most important job. When you are
ready to do a job the poll method gives you the
most important job and removes it from the queue.

Priority queues are often implemented in
terms of Binary Heaps. A heap is a tree with
the property that the value in each node is
less than or equal to the values of its
children.

Here is a picture of a heap:

3

8 16

10 12

15 25

18 20

If we changed the 12 to a 6 it would no longer be a
heap because this node would have a value less than
its parent.

Note that in a heap the smallest node must be at
the root. If the smallest value had a parent, it
would violate the heap property because it
would be a child with smaller value than its
parent.

